

For Immediate Assistance call (800) 854-6019 or E-mail us at info@tapmatic.com

Table of Contents

Tapping Safety	1
Checklist for Best Results	4
What Speed Can I Run My Tap?	6
What Size Drill Should I Use?	10
What Factors Influence Drill Selection?	11
What Clearance Should I Have In a Blind Hole?	12
What Style Tap is Recommended for my Material?	13
Common Terms for Tap Features	16
Common Thread Terms	17
Why Choose Coarse of Find Threads?	19
Recommendations For Roll Forming Threads	20
Tapping Torque & Horse Power	22
Choosing the Drill and How This Influences Tapping Torque and Thread Strength	24
Tap Dimensions (ANSI Shanks)	25
Tap Dimensions (Din 371)	26
Tap Dimensions (Din 374)	27
Tap Dimensions (Din 376)	
Tap Dimensions for Pipe Tape	29
What is the Meaning of Thread Class and what are H Limits?	30
What Surface Treatments Are Commonly Used for Taps	
Helpful Formulas Related to Tapping	
Troubleshooting	

TAVPIVIATIC

Tapping Safety

To avoid serious injury and ensure best result for your tapping operation, Please Read Carefully All operator and safety instructions provided for your tapping attachment as well as all other safety instructions that are applicable, especially those for your machine tool.

1. Proper Clothing: The rotating spindle of a machine tool can snag loose fitting clothing, jewelry or long hair. **Never** wear jewelry, long sleeves, neckties, gloves or anything else that could become caught when operating a machine tool. Long hair must be restrained or netted to prevent it from becoming entangled in rotating spindle. Steel toed boots should also be worn in any machine environment.

2. Proper Eye Protection: Always wear safety glasses with side shields to protect your eyes from flying particles.

3. Proper Work Piece Fixturing: Never hold the work piece or the vise it is held in, by hand. The work piece must be clamped firmly to the table of the machine so that it cannot move, rotate or lift.

4. Proper Stop Arm / Torque Bar Installation For Self-Reversing Attachments On Conventional Machines:

Quill Clamp Capacity 1 1/2 – 2 3/8	Order # 29099	Max Tap Size 1/2	"Ope
2 3/8 – 4 1/2	290991	3/4	
Torque Bar Assembly Table Mount	Order # 29097	Max Tap Size 3/4	
Heavy Duty Table Mount	29096	1 3/4	

Tapping Safety (Continued)

Never extend the length of the standard stop arm supplied with your tapping attachment. A lengthened stop arm could break free, hitting the operator and causing serious injury.

Never hold the stop arm by hand. On reversal, full power of the machine is transmitted through the stop arm and the operator could be seriously injured.

A

Always mount a torque bar to hold the tapping attachment's stop arm from rotating. The torque bar **must** be mounted securely to the table or quill of your machine. The torque bar installation **must** be stronger than the largest tap in the capacity range of your tapping attachment.

7. Continuous High Production Manual Tapping: Models for use on conventional drill press or milling machines. Speed is a critical factor in tapping. Please always refer to recommended tapping speed chart. Tapmatic Torque Control Reversing Tapping Attachments employ a planetary gear reversing mechanism that increases speed by a 1.75 x 1 ratio. This means that a machine speed of 2,000 RPM results in a reversing speed of 3,500 RPM. It is strongly recommended that you consider the **AVERAGE TAPPING SPEED** rather than machine speed when calculating your cycle time. For example, if machine speed is 1,500 RPM, reverse speed is 2,625 RPM, making your **AVERAGE TAPPING SPEED 2,062 RPM**.

You must not exceed the maximum allowable speed marked on your tapping attachment.

A

8. On Machining Centers: The same rule for installation applies whether using the torque bar holder assembly with stop arm, torque bar cup assembly or stop block assembly. "**Always** be sure that the installation is stronger than the largest tap being used."

9. Always Be Aware Of The Potential Hazards Of A Machining Operation: Sometimes working with your machine can seem routine. You may find that you are no longer concentrating on the operation. A feeling of false security can lead to serious injury. Always be alert to the dangers of the machines with which you work. Always keep hands. Body parts, clothing, jewelry and hair out of the areas of operation, when the machine spindle is rotating. Areas of operation include the immediate point of machining and all transmission components including the tapping attachment. Never bring your hand, other body parts or anything attached to your body into any of these areas until the machine spindle is completely stopped.

Tapping Safety (Continued)

10. The tapping attachment housing, drive spindle and tap itself can become hot to the touch after operation. Use caution when removing the attachment from the machine of handling.

A

11. Be aware of any other applicable safety instructions requirements.

Check List For Good Tapping:

Never use the tapping unit before reading all safety instructions for it as well as those for the machine it is to be used on.

Is tap sharp and of correct design for current job?

Is tap in proper alignment with drilled hole?

- Is machine speed correct?
- Is machine feed correct?

Is machine stop set properly so tap releases in neutral rather than bottoming in work piece or fixture? Is work piece held rigidly against rotation and upward movement?

Is clearance between the drilled hole and tap sufficient at start position to allow the tap to clear the hole upon retraction?

Is the stop arm of the tapping attachment held rigidly against rotation by the torque bar extending from the machine?

References for this Safety Information include but are not limited to:

American National Standards Institute

ANSI B11.8-1983 (Adopted May 31, 1983 by Department of Defense) Coastal Video Communications Corporation Machine Guarding Copyright 1994

Society Of Manufacturing Engineers

Tool and Manufacturing Engineers Handbook Volume 1 Machining (Library of Congress Catalog No. 82-060312)

Tapping Checklist

Work Piece All Applications	 What are the size and depth of the hole? Will it be a through or blind hole? Is the hole drilled to the correct size? Is the work piece rigidly held against rotation and upward movement? If tapping a bottom-hole, does drilled depth allow for chamfer teeth of tap and sufficient clearance to keep tap from bottoming out in hole? What is material and hardness of the work piece?
Tap All Applications	 Do you have the correct tap design for the application? What are the tap sizes and styles? What material is the tap made from? Is the tap sharp? Is the tap properly aligned with the drilled hole? Is there sufficient clearance between the tap and the hole to allow for retraction? Who is tap manufacturer? What speed do they recommend for optimum performance of their tap in this material?
Machine Tool Manual Applications	 Is machine stop set so the tap releases in neutral to prevent bottoming? Is the machine retraction correct for tapping attachment being used? Is the torque control set to prevent tap breakage? Is depth control set to correspond with machine stop to provide the total thread depth required and prevent bottoming?
CNC Applications	 What type of machine is in use? What is the horsepower? What is the spindle taper? What is the method of fixturing? Are machine feed and speed set correctly?
All Applications	 Is the proper cutting fluid or lubricant being used for lubricating the tap?
Tapping Attachment All Applications	 Is the correct Tapmatic tapping attachment being used for the specific job requirements?
CNC Applications	 Is the machine retraction correct for the tapping attachment being used?

TAPINATIC

Tapping Checklist (Continued)

Tapping Head Installation and Machine Set Up All Applications	 Never perform any installation or programming, before reading the operator instructions ac companying the tapping attachment and the machine as well as the tap manufacturers' recommendations. With a self-reversing tap chuck for manual or CNC operations, it is important to make sure that stop arm is strong enough to prevent torque bar from bending or deflecting. Machine torque bar must be stronger than largest tap. Is clearance between the drilled hole and tap sufficient at start position to allow the tap to clear the hole upon retraction? If a bottom hole is being tapped is there sufficient chip clearance?
Manual Applications	 If torque control attachment is being used, is torque set correctly so that tap will not break if accidentally bottomed? If depth control feature is employed, is it set correctly to cooperate with machine stop, provide total thread depth required and prevent engagement with bottom?
CNC Applications	 The machine retraction must be correct for the tapping attachment being used. What is the feed rate? What is the actual tapping speed? What is the clearance plane height? Is the potentiometer canceled? Be sure to follow programming instructions for the tool.

• When using a self-reversing head, has the ramp, dwell or exact stop been disabled?

Determining Correct Speed Within Specified Range

Compilation of Guidelines From Tap Manufacturers And Other Sources For Cutting or Cold-Forming of Threads In Relation To Work Piece Material

Cutting Speed For Tapping: Several factors, singly or in combination can cause very great differences in the permissible tappingspeed. The principal factors affecting the tapping speed are the pitch of the thread, the chamfer length on the tapp. the percentage of full thread to be cut, the length of the hole to be tapped, the cutting fluid used, whether the threads are straight or tapered, the machine tool used to perform the operation, and the material to be tapped. From Machinery's Handbook 23rd edition. If your coolant does not contain EP additives or its lubrication quality is low, start from the lower speeds in the range. Roll form taps in particular require good lubrication because of the high friction forces involved. As the lubrication guality of a coolant is often unknown, we recommend you start from the lower speeds in the range.

Th	ese Factors Apply to <u>Even</u> Ten Factors Requiring	von	e's Tapping Speed Charl	s								
-%	Lower Speeds		Higher Speeds	+%								
-20	Poor Lubrication	1	Good Lubrication	+20								
-15	High Tensile Strength Of Material	2	Low Tensile Strength Of Material	+15								
-15	Large Thread Diameter	4	Small Thread Diameter	+15								
-10	High Alloy Materials	3	Low Alloy Materials	+10								
-10	Thread Depth More Than 1.5 x Dia.	5	Thread Depth 1.5 x Dia. Or Less	+10								
-10	Thread Pitch Coarse	6	Thread Pitch Fine	+10								
-5	Drill Size More than 65% of Thread	7	Drill Size 65% or Less Thread	+5								
-5	Tap Lead Less Than 3.5 Thread	8	Tap Lead More Than 3.5 Threads									
-5	Blind Holes	9	Through Holes	+5								
-5	Free Running Spindle Inaccurate Pitch Control Hydraulic/Air Feed	10	Synchronous Spindle Lead Screw CNC Control	+5								
Examp Tap Siz	le: e:1/4"-28 Coated. Material: Aluminum Dir	e Cast	From Chart 688-1375 RPM RPM Spread = 6	87								
Minus	Factors: High Tensile Strength -15 Thread Depth 3 x Dia10 Drill Size = 75% Thd5 Blind Hole -5 TOTAL -35	Plus Fa	actors: Coolant With Good EP Small Thread Diameter Pitch Fine 410 Lead 3.5 Threads 45 CNC Machine 45									
Apply +.55 35 Comn	The Factors Against The RPM Spread of 0 X 687 = 378 Added to minimum RPM X 687 = 240 Substracted from maxim non Sense Rule: Begin with min RPM and	687 1 688 = 1um RP d work (1066 New Mininimum RPM M 1375 = 1135 New Maximum RPM up to optimum efficiency and tap life.									
	TADUATIO OFT O	dare El	ov Rigid Tap Drivere									
Mc SF SF SF	TAPMATIC SFT, SynchroFlex, Rigid Tap Drivers Model RPM Capacity SFT10 Limited #2 - #10-32 SFT50 Only By #10 - 1/2" SFT75 Rigd 1/2"-13 - 3/4"-10 SFT100 Tapping 3/4"-10 - 1"											
Ma RC RC RC RC	SFT100 Tapping Program 3/4*-10 - 1* TAPMATIC CST, Constant Speed, Self-Reversing Tapping Heads Model Spindle RPM Spindle RPM Capacity RDT15 H0 and HS Heavy Duty 5000 RPM High Speed 6000 RPM (#1.4*1.4*2.5.4%) RDT35 H0 and HS Heavy Duty 2000 RPM High Speed 4000 RPM (#1.4*1.4*2.5.4%) RDT35 H0 and HS Heavy Duty 2000 RPM High Speed 4000 RPM (#1.4*1.4*2.5.4%) RDT35 H0 and HS Heavy Duty 2000 RPM High Speed 2000 RPM (#1.4*1.4*1.4*2.5.4%) RDT35 1200 RPM (#1.4*1.1*1.4*2.5.4%) (#1.4*1.1*1.4*2.5.4%) (#1.4*1.1*1.4*2.5.4%)											

Tools come with Popular Inch & Metric Size Straight Shanks adaptable to CAT, BT and HSK. All sizes available. See Price List.

Comparison Test Between Fastest Rigid Tapping Method And Constant Speed Tapping

Tapmatic & 1996 Machining Center 1999 Hi-Speed Tapping Center TEST: (10) 6mm Roll Form Holes, 9mm Deep, 2500 RPM, 7075 Aluminum Even when the tapping center's RPM was increased to 4000, it didn't produce more 'Holes Per Minute (HPM) than Tapmatic at 2500. SEND FOR COPY OF THIS VIDEO.

Seven Essential Steps For Trouble Free Performance With Self-Reversing Tapping Heads

- 1. Choose the proper tap: Follow your tap manufacturers recommendations for your specific application.
- 2. Calculate the correct tapping speed from the adjacent charts and the rules on this page
- 3. Common sense rule: Begin conservatively and increase speed until optimum results are obtained.
- Select the best tool for your application or applications. High production with one tap size (Don't compromise), low production with a variety of taps, (Choose the tool that best covers range.)
- 5. Follow our programming instructions exactly, and absolutely make sure ramp or exact stop has been eliminated from tapping cycle. Leaving it in will increase tapping time 30% increase thread depth variations substantially, and wear out the tapping head prematurely.
- 6. Follow our installation instructions exactly and lock orientation collar in place once stop arm is in proper position. Then fix it positively with the locking screw provided.
- Schedule preventative maintenance. Disassembly, cleaning, re-lubricating, and reassembly takes no more than half an hour. Just consider what the head does for the machine by eliminating its reversal related wear and tear. Simple maintenance will keep the head working efficiently, and pay big dividends in trouble free production

Speed Chart/Standard Taps

	Low Carbon Steel. Medium Carbon Steel	High Carbon Steel, High Strength Steel, Tool Steel	High Strength Steel, Tool Steel Hardened	Stainless 303, 304, 316	Stairless 410, 430, 17-4 Hardened	Stairless 17-4 Annealed	Titarium Alloys	Nickel Base Alloys	Aluminium Alloys	Aluminium Die Cast	Magneslum	Brass, Bronze	Copper	Castlron
A) m/min	10-20	8-12	4-6	6-12	3-5	6-12	4-8	3-5	15-25	10-15	15-25	15-25	8-12	10-20
B) m/min	20-40	15-25	12-18	8-15	4-10	8-20	8-15	5-10	40-60	30-40	40-60	40-60	15-25	20-30
Tap size	A) rpm for H B) rpm for H	ISS-E uncoate ISS-E coated t	d taps aps											
M2	1600-3200	1250-1900	640-800	800-1900	480-800	800-1900	640-1250	480-800	2400-4000	1600-2400	2400-4000	2400-4000	1250-1900 2400-4000	1600-3200
(#2)	3200-6350	2400-4000	1900-2850	1250-2400	640-1600	1250-3200	1250-2400	800-1600	6350-9550	4750-6350	6350-9550	6350-9550		3200-4750
M3 (#5)	1050-2100	850-1250	420-530	530-1250 850-1600	320-530	530-1250	420-850	320-530	1600-2650	1050-1600	1600-2650	1600-2650	850-1250	1050-2100
(#3) M4 (#8)	800-1600	640-950 1200-2000	320-400	400-950	240-400	400-950	320-640 640-1200	240-400	1200-2000	800-1200 2400-3200	1200-2000	1200-2000	640-950 1200-2000	800-1600 1600-2400
M5 (#10)	640-1250 1250-2550	510-760 950-1600	250-320	320-760	190-320	320-760	250-510	190-320	950-1600 2550-3800	640-950 1900-2550	950-1600 2550-3800	950-1600 2550-3800	510-760	640-1250 1250-1900
M6 (1/4)	530-1050 1050-2100	420-640	210-270	270-640	160-270	270-640	210-420	160-270	800-1350 2100-3200	530-800 1600-2100	800-1350 2100-3200	800-1350 2100-3200	420-640	530-1050 1050-1600
M7	450-910	360-550	180-230	230-550	140-230	230-550	180-360	140-230	680-1150	450-1150	680-1150	680-680	360-550	450-910
	910-1800	680-1150	550-820	360-680	180-450	360-910	360-680	230-450	1800-2750	1350-1800	1800-2750	1800-2750	680-1150	910-1350
M8 (5/16)	400-800	320-480 600-990	160-200 480-720	200-480	120-200	200-480	160-320 320-600	120-200	600-990 1600-2400	400-600	600-990 1600-2400	600-990 1600-2400	320-480	400-800
M9	350-710	280-420	140-180	180-420	110-180	180-420	140-280	110-180	530-880	350-530	530-880	530-880	280-420	350-710
	710-1400	530-880	420-640	280-530	140-350	280-710	280-530	180-350	1400-2100	1050-1400	1400-2100	1400-2100	530-880	710-1050
M10	320-640	250-380	130-160	160-380	100-160	160-380	130-250	100-160	480-800	320-480	480-800	480~800	250-380	320-640
(3/8)	640-1250	480-800	380-570	250-480	130-320	250-640	250-480	160-320	1250-1900	950-1250	1250-1900	1250-1900	480-800	640-950
M12	270-530	210-320	110-130	130-320	80-130	130-320	110-210	80-130	400-660	270-400	400-660	400-660	210-320	270-530
(1/2)	530-1050	400-660	320-480	210-400	110-270	210-530	210-400	130-270	1050-1600	800-1050	1050-1600	1050-1600	400-660	530-800
M14	230-450	180-270	90-110	110-270	70-110	110-270	90-180	70-110	340-570	230-340	340-570	340-570	180-270	230-450
(9/16)	450-910	340-570	270-410	180-340	90-230	180-450	180-340	110-230	910-1350	680-910	910-1350	910-1350	340-570	450-680
M16	200 400	160 240	80 100	100 240	60 100	100 240	80 160	60 100	300 500	200 300	300 500	300 500	160 240	200 400
(5/8)	400-800	300-500	240-360	160-300	80200	160-400	160-300	100-200	800-1200	600-800	800-1200	800-1200	300-500	400-600
M18	180-350	140-210	70-90	90-210	50-90	90-210	70-140	50-90	270-440	180-270	270-440	270-440	140-210	180-350
(11/16)	350-710	270-440	210-320	140-270	70-180	140-350	140-270	90-180	710-1050	530-710	710-1050	710-1050	270-440	350-530
M20	160-320	130-190	60-80	80-190	50-80	80-190	60-130	50-80	240-400	160-240	240-400	240-400	130-190	160-320
(3/4)	320-640	240-400	190-290	130-240	60-160	130-320	130-240	80-160	640-950	480-640	640-950	640-950	240-400	320-480
M22	140-290	120-170	60-70	70-170	40-70	70-170	60-120	40-70	220-360	140-220	220-360	220-360	120-170	140-290
(7/8)	290-580	220-360	170-260	120-220	60-140	120-290	120-220	70-140	580-870	430-580	580-870	580-870	220-360	290-430
M24	130-270	110-160	50-70	70-160	40-70	70-160	50-110	40-70	200-330	130-200	200-330	200-330	110-160	130-270
(15/16)	270-530	200-330	160-240	110-200	50-130		110-200	70-130	530-800	400-530	530-800	530-800	200-330	270-400
M25	130-250	100-150	50-60	60-150	40-60	60-150	50-100	40-60	190-320	130-190	190-320	190-320	100-150	130-250
(1)	250-510	190-320	150-230	100-190	50-130	100-250	100-190	60-130	510-760	380-510	510-760	510-760	190-320	250-380
M26	120-240	100-150	50-60	60-150	40-60	60–150	50-100	40-60	180-310	120-180	180310	180-310	100–150	120-240
	240-490	180-310	150-220	100-180	50-120	100–240	100-180	60-120	490-730	370-490	490/30	490-730	180–310	240-370
M27	120-240	90-140	50-60	60-140	40-60	60-140	50-90	40-60	180-290	120-180	180-290	180-290	90-140	120-240
(1 1/16)	240-470	180-290	140-210	90-180	50-120	90-240	90-180	60-120	470-710	350-470	470-710	470-710	180-290	240-350
M28	110-230	90-140	50-60	60-140	30-60	60-140	50-90	30-60	170-280	110-170	170-280	170-280	90-140	110-230
(1 1/8)	230-450	170-280	140-200	90-170	50-110	90-230	90-170	60-110	450-680	340-450	450-680	450-680	170-280	230-340
M30	110-210	80-130	40-50	50-130	30-50	50-130	40-80	30-50	160-270	110-160	160-270	160-270	80-130	110-210
(1 3/16)	210-420	160-270	130-190	80-160	40-110	80210	80-160	50-110	420-640	320-420	420-640	420-640	160-270	210-320
M32	100-200	80-120	40-50	50-120	30-50	50-120	40-80	30-50	150-250	100-150	150-250	150-250	80-120	100-200
(1 1/4)	200100	150-250	120-180	80-150	40-100	80-200	80-150	50-100	400-600	300-400	400-600	400-600	150-250	200-300
M33	100-190	80-120	40-50	50-120	30-50	50-120	40-80	30-50	140-240	100-140	140240	140-240	80-120	100-190
(1 5/16)	190-390	140-240	120-170	80-140	40-100	80-190	80-140	50-100	390-580	290-390	390580	390-580	140-240	190-290
M36	90-180	70-110	40-40	40-110	30-40	40-110	40-70	30-40	130-220	90-130	130-220	130-220	70–110	90-180
(1 7/16)	180-350	130-220	110-160	70-130	40-90	70-180	70-130	40-90	350-530	270-350	350-530	350-530	130–220	180-270
M39	80-160	70-100	30-40	40-100	20-40	40-100	30-70	20-40	120-200	80-120	120-200	120-200	70-100	80-160
(1 5/8)	160-330	120-200	100-150	70-120	30-80	70-160	70-120	40-80	330-490	240-330	330-490	330-490	120-200	160-240
M40	80-160	60-100	30-40	40-100	20-40	40-100	30-60	20-40	120-200	80-120	120-200	120-200	60-100	80–160
	160-320	120-200	100-140	60-120	30-80	60-160	60-120	40-80	320-480	240-320	320-480	320-480	120-200	160–240
M42	80–150	60-90	30-40	40-90	20-40	40-90	30-60	20-40	110-190	80-110	110–190	110–190	60-90	80–150
(1 3/4)	150–300	110-190	90-140	60-110	30-80	60-150	60-110	40-80	300-450	230-300	300–450	300–450	110-190	150–230

Tapping speed
RPM $v_c = m/min$
n = U/min $v_c \times 1000$
d = mmExample: M8 with 25 m/min
 $n = \frac{25 \times 1000}{manufacturer.}$ The speed given are guide values acc. to general information and can vary depending on tap
manufacturer.Topping speed
RPM $v_c = m/min$
n = U/min $v_c \times 1000$
 $n = \frac{25 \times 1000}{manufacturer.}$ - The speed given are guide values acc. to general information and can vary depending on tap
manufacturer.Diameterd = mm $n = \frac{25 \times 1000}{d \times 3.14}$ - For optimal production and correct speed, we suggest following the specifications of the tap
Furthermore, the maximum speed of the tapping attachment must not be exceeded.

RDT15	RDT25 RDTIC25	RDT50 RDTIC50 RDTICXT50 RDTXT50 RCT50	sintered gears	RDT50 RDTIC50 RDTICXT50 RDTXT50 RCT50	cut gears	RDT85HS RDTIC85HS	RDT85HD RDTIC85HD	RDT100 RDTHC100	RDT150
-------	------------------	---	----------------	---	-----------	----------------------	----------------------	--------------------	--------

7

TAPINATIC'

Speed Chart/High Speed/Top Speed Taps

	Low Carbon Steel. Medium Carbon Steel	High Carbon Steel, High Strength Steel, Tool Steel	High Strength Steel, Tool Steel Hardened	Stainless 303, 304, 316	Stainless 410, 430, 17-4 Hardened	Stainless 17.4 Annealed	Titanium Alloys	Nickel Base Alloys	Aluminium Alloys	Aluminium Die Cast	Magnesum	Brass, Bronze	Copper	CastIron
A) m/min B) m/min	50-70 —	20-30 40-60	15-20 30-50	10-15 —	6-10 —	10-15 —	12-15	6-12	50-70 60-80	40-50 50-70	50-70 40-80	30-70 60-80	20-30 30-50	25-40 30-50
Tap size	A) rpm for H B) rpm for H	ISS-E uncoate ISS-E coated t	ed taps aps											
M2 (#2)	7950-11150 640-800	32004750 63509550	2400-3200 4750-7950	1600-2400 640-800	800-1600 640-800	1600-2400 640-800	1900-2400	800-1900	7950-11150 9550-12750	6350-7950 7950-11150	7950-11150 6350-12750	4750-11150 9550-12750	3200-4750 4750-7950	4000-6350 4750-7950
M3 (#5)	5300-7450 420-530	2100-3200	1600-2100	1050-1600	530-1050 420-530	1050-1600	1250-1600	530-1250 -	5300-7450 6350-8500	4250-5300	5300-7450 4250-8500	3200-7450	2100-3200	2650-4250
M4 (#8)	4000-5550	1600-2400	1200-1600	800-1200 320-400	400-800	800-1200 320-400	950-1200 -	400-950	4000-5550	3200-4000	4000-5550	2400-5550	1600-2400	2000-3200
M5	3200-4450	1250-1900	950-1250	640-950	320-640	640-950	760-950	320-760	3200-4450	2550-3200	3200-4450	1900-4450	1250-1900	1600-2550
(#10) M6 (1(4)	250-320 2650-3700	1050-1600	800-1050	530-800	270-530	530-800	640-800	270-640	2650-3700	2100-2650	2550-3700	1600-3700	1050-1600	1350-2100
(174) M7	2250-3200	910-1350	680-910 1250 2250	450-680	230-450	450-680	- 550-680	- 230-550	2250-3200	1800-2250	2250-3200	1350-3200	910-1350	1150-1800
M8	2000-2800	800-1200	600-800	400-600	200-400	400-600	480-600	200-480	2000-2800	1600-2000	2000-2800	1200-2800	800-1200	990-1600
(5/16) M9	160-200 1750-2500	1600-2400 710-1050	1200-2000	160-200	160-200	160-200 350-530	- 420-530	- 180-420	2400-3200	2000-2800	1600-3200	2400-3200	1200-2000	1200-2000
M10	140-180	1400-2100	1050-1750	140-180	140-180	140-180	- 380-480	- 160-380	2100-2850	1750-2500	1400-2850	2100-2850	1050-1750	1050-1750
(3/8)	130-160	1250-1900	950-1600	130-160	130-160	130-160	-	-	1900-2550	1600-2250	1250-2550	1900-2550	950-1600	950-1600
(1/2)	110-130	1050-1600	800-1350	110-130	110-130	110-130	-	-	1600-2100	1350-1350	1050-2100	1600-2100	800-1350	800-1350
M14 (9/16)	1150-1600 90-110	450-680 910-1350	340-450 680-1150	230-340 90-110	110-230 90-110	230-340 90-110	270-340	-	1150-1600 1350-1800	910-1150 1150-1600	1150-1600 910-1800	680-1600 1350-1800	450-680 680-1150	570-910 680-1150
M16 (5/8)	990-1400 80-100	400-600 800-1200	300-400 600-990	200-300 80-100	100-200 80-100	200-300 80-100	240-300	100-240	990-1400 1200-1600	800-990 990-1400	990-1400 800-1600	600-1400 1200-1600	400-600 600-990	500-800 600-990
M18 (11/16)	880-1250 70-90	350-530 710-1050	270-350 530-880	180-270 70-90	90-180 70-90	180-270 70-90	210-270 -	90-210 -	880-1250 1050-1400	710-880 880-1250	880-1250 710-1400	530-1250 1050-1400	350-530 530-880	440-710 530-880
M20 (3/4)	800-1100 60-80	320-480 640-950	240-320 480-800	160-240 60-80	80-160 60-80	160-240 60-80	190-240 -	80-190 -	800-1100 950-1250	640-800 800-1100	800-1100 640-1250	480-1100 950-1250	320-480 480-800	400-640 480-800
M22 (7/8)	720-1000 60-70	290-430 580-870	220-290 430-720	140-220 60-70	70-140 60-70	140-220 60-70	170-220 -	70-170 -	720-1000 870-1150	580-720 720-1000	720-1000 580-1150	430-1000 870-1150	290-430 430-720	360-580 430-720
M24 (15/16)	660-930 50 70	270-400 530-800	200-270 400 660	130-200 50-70	70-130 50 70	130-200 50 70	160-200	70-160	660-930 800-1050	530-660 660-930	660-930 530 1050	400-930 800 1050	270-400 400 660	330-530 400 660
M25 (1)	640~890 50-60	250-380 510-760	190-250 380-640	130-190 50-60	60-130 50-60	130-190 50-60	150-190 -	60-150 -	640-890 760-1000	510-640 640-890	640-890 510-1000	380-890 760-1000	250-380 380-640	320-510 380-640
M26	610-860 50-60	240-370 490-730	180-240 370-610	120-180 50-60	60-120 50-60	120-180 50-60	150-180 -	60-150 -	610-860 730-980	490-610 610-860	610-860 490-980	370-860 730-980	240-370 370-610	310-490 370-610
M27 (1 1/16)	590-830 50-60	240-350 470-710	180-240 350-590	120-180 50-60	60-120 50-60	120-180 50-60	140-180 -	60-140 -	590-830 710-940	470-590 590-830	590-830 470-940	350-830 710-940	240-350 350-590	290-470 350-590
M28 (1 1/8)	570~800 50~60	230-340 450-680	170-230 340-570	110-170 50-60	60-110 50-60	110-170 50-60	140-170 -	60-140 -	570-800 680-910	450-570 570-800	570800 450910	340-800 680-910	230-340 340-570	280-450 340-570
M30 (1 3/16)	530-740 40-50	210-320 420-640	160-210 320-530	110-160 40-50	50-110 40-50	110-160 40-50	130-160	50–130 –	530-740 640-850	420-530 530-740	530-740 420-850	320-740 640-850	210-320 320-530	270-420 320-530
M32 (1 1/4)	500-700 40-50	200-300	150-200 300-500	100-150 40-50	50-100 40-50	100-150 40-50	120-150	50-120 -	500-700 600-800	400-500	500-700 400-800	300-700 600-800	200-300 300-500	250-400 300-500
M33 (15/16)	480-680 40-50	190-290 390-580	140-190 290-480	100-140 40-50	50-100 40-50	100-140 40-50	120-140 -	50-120 -	480-680 580-770	390-480 480-680	480-680 390-770	290-680 580-770	190-290 290-480	240-390 290-480
M36 (1 7/16)	440-620	180-270	130-180 270-440	90-130 40-40	40-90	90-130 40-40	110-130	40-110	440-620 530-710	350-440 440-620	440-620 350-710	270-620 530-710	180-270 270-140	220-350
M39 (1 5/8)	410-570	160-240 330 490	120-160	80-120 30-40	40-80 30-40	80-120 30-40	100-120	40-100	410-570	330-410 410 570	410-570 330 650	240-570	160-240 240 410	200-330
M40	400-560 30-40	160-240 320-480	120-160 240-400	80-120 30-40	40-80 30-40	80-120 30-40	100-120	40-100 -	400-560 480-640	320-400 400-560	400-560 320-640	240-560 480-640	160-240 240-400	200-320
M42 (1 3/4)	380-530 30-40	150-230 300-450	110-150 230-380	80-110 30-40	40-80 30-40	80-110 30-40	90-110 -	4090	380-530 450-610	300-380 380-530	380-530 300-610	230-530 450-610	150-230 230-380	190-300 230-380
Tapping spec RPM Diameter	ed v _c = m n = U d = m	ı/min /min ım	Calculation $n = \frac{v_c \times 1}{d \times d}$:: Exa 0000 n =	mple: M8 wit $ \frac{40 \times 1000}{8 \times 3.14} $	th 40 m/min =1592m/min	 The smanu For o manu Furth 	peed given a ifacturer. ptimal produ ifacturer. iermore, the r	re guide value ction and con maximum spe	es acc. to gen rect speed, w ed of the tap	eral informati e suggest foll ping attachm	on and can v owing the sp ent must not	ary dependin ecifications o be exceeded	g on tap f the tap I.

RDT15	RDT25 RDTIC25	RDT50 RDTIC50 RDTICXT50 RDTXT50 RCT50	sintered gears	RDT50 RDTIC50 RDTICXT50 RDTXT50 RCT50	cut gears
-------	------------------	---	----------------	---	-----------

(Continued)

RDT85HS RDTIC85HS RDT85HD RDTIC85HD RDT100 RDTIC100

RDT150

Speed Chart/Roll From Taps

	.ow Carbon Steel. Medium Carbon Steel	High Carbon Steel, High Strength Steel, fool Steel	High Strength Steel, fool Steel Hardened	stainless 303, 304, 316	stainless 17-4 Annealed	Ftanium Alloys	Vickel Base Alloys	Muminium Alkoys	Auminium Die Cast	Copper
A) m/min	30-40	20-30	15-25	10-15	10-15	5-15	3-5	30-60	20-40	15-25
b) numin	A) rpm for H	ISS-E uncoate	ed taps	12-20	-		0-12	30-70	30-30	25-50
Tap size	B) rpm for H 4750-6350	3200-4750	2400-4000	1600-2400	1600-2400	800-2400	480-800	4750-9550	3200-6350	2400-4000
(#2)	6350-9550	4750-7950	4000-6350	1900-3200	-	320-1600	1250-1900	7950-11150	4750-7950	4000-7950
M3	3200-4250	2100-3200	1600-2650	1050-1600	1050-1600	530-1600	320-530	3200-6350	2100-4250	1600-2650
(#5)	4250-6350	3200-5300	2650-4250	1250-2100		210-1050	850-1250	5300-7450	3200-5300	2650-5300
M4	2400-3200	1600-2400	1200-2000	800-1200	800-1200	400-1200	240-400	2400-4750	1600-3200	1200-2000
(#8)	3200-4750	2400-4000	2000-3200	950-1600	-	160-800	640-950	4000-5550	2400-4000	2000-4000
M5	1900-2550	1250-1900	950-1600	640-950	640-950	320-950	190-320	1900-3800	1250-2550	950-1600
(#10)	2550-3800	1900-3200	1600-2550	760-1250	-	130-640	510-760	3200-4450	1900-3200	1600-3200
M6	1600-2100	1050-1600	800-1350	530-800	530-800	270-800	160-270	1600-3200	1050-2100	800-1350
(1/4)	2100-3200	1600-2650	1350-2100	640-1050		110-530	420-640	2650-3700	1600-2650	1350-2650
M7	1350-1800	910-1350	680-1150	450-680	450-680	230-680	140-230	1350-2750	910-1800	650-1150
	1800-2750	1350-2250	1150-1800	550-910	-	90-450	360-550	2250-3200	1350-2250	1150-2250
M8	1200-1600	800-1200	600-990	400-600	400-600	200-600	120-200	1200-2400	800-1600	600-990
(5/16)	1600-2400	1200-2000	990-1600	480-800		80-400	320-480	2000-2800	1200-2000	990-2000
M9	1050-1400	710-1050	530-880	350-530	350-530	180–530	110-180	1050-2100	710-1400	530-880
	1400-2100	1050-1750	880-1400	420-710	-	70–350	280-420	1750-2500	1050-1750	880-1750
M10	950-1250	640-950	480-800	320-480	320–480	160–480	100-160	950-1900	640-1250	480-800
(3/8)	1250-1900	950-1600	800-1250	380-640	–	60–320	250-380	1600-2250	950-1600	800-1600
M12 (1/2)	800-1050 1050-1600	530-800 800-1350	400-660 660-1050	270-400 320-530	270-400	130-400 50-270	80-130 210-320	800-1600 1350-1850	530-1050 800-1350	400-660 660-1350
M14	680-910	450-680	340-570	230-340	230-340	110-340	70-110	680-1350	450-910	340-570
(9/16)	910-1350	680-1150	570-910	270-450	-	50-230	180-270	1150-1600	680-1150	570-1150
M16	600-800	400-600	300-500	200-300	200-300	100-300	60-100	600-1200	400-800	300-500
(5/8)	800-1200	600-990	500-800	240-400		40-200	160-240	990-1400	600-990	500-990
M18	530-710	350-530	270-440	180-270	180-270	90-270	50-90	530-1050	350-710	270-440
(11/16)	710 1050	530 880	440 710	210-350		40-180	140-210	880-1250	530 880	440-880
M20 (3/4)	480-640 640-950	320-480 480-800	240-400 400-640	160-240	160-240	80-240	50-80 130-190	480-950 800-1100	320-640 480-800	240-400
M22	430-580	290-430	220-360	140-220	140-220	70-220	40-70	430-870	290-580	220-360
(7/8)	580-870	430-720	360-580	170-290		30-140	120-170	720-1000	430-720	360-720
M24 (15/16)	400-530 530-800	270-400	200-330 330-530	130-200 160-270	130-200	70-200 30-130	40-70 110-160	400-800	270-530	200-330 330-660
M25	380-510	250-380	190-320	130-190	130–190	60-190	40-60	380-760	250-510	190-320
(1)	510-760	380-640	320-510	150-250	-	30-130	100-150	640-890	380-640	320-640
M26	370 490 490-730	240-370 370-610	180 310 310-490	120 180 150-240	120-180	60 180 20-120	40 60 100-150	370-730 610-860	240 490 370-610	180 310 310-610
M27	350-470	240-350	180-290	120-180	120-180	60-180	40-60	350-710	240-470	180-290
(1 1/16)	470-710	350-590	290-470	140-240		20-120	90-140	590-830	350-590	290-590
M28	340-450	230-340	170-280	110-170	110-170	60-170	30-60	340-680	230-450	170-280
(1 1/8)	450-680	340-570	280-150	140-230	-	20-110	90-140	570-800	340-570	280-570
M30	320-420	210-320	160-270	110-160	110-160	50-160	30-50	320-640	210-420	160-270
(1 3/16)	420-640	320-530	270-420	130-210		20-110	80-130	530-740	320-530	270-530
M32 (1 1/4)	300-400 400-600	200-300	150-250 250-400	100-150 120-200	100-150 -	50-150 20-100	30~50 80-120	300-600 500-700	200-400 300-500	150-250 250-500
M33	290-390	190-290	140-240	100-140	100-140	50-140	30-50	290-580	190-390	140-240
(1 5/16)	390-580	290-480	240-390	120-190		20-100	80-120	480-680	290-480	240-480

9

Drill Selection: Inches / Metric

For Inch/Metric Taps & Decimal Equivalents

Note: Most drill size charts are based on using standard job drills which can drill over size by approximately .003. These charts are based on .003 over size condition to achieve the proper percentages of thread. With today's high precision drills, they are now capable of drilling to near net size. When using a high precision drill or a "G" drill you should refer to the drill size formula's in the "Tapping Formulas" section.

Fraction Drill Siz	n Or 19	Decimal Equivalent	Tap Size	Fraction Or Drill Size	Decimal Equivalent	Tap Size	Fraction Or Drill Size	Decimal Equivalent	Tap Size
NUMBER SZE DRILLS	80 79	.0135 .0145 .0156		39 38 37 7 36	.0995 .1015 .1040 .1065	5-40 5-44 6-32	15 64 SOE C PRILS C	2344 2390 2420 2460	
	78 77 76 75 74	.0160 .0180 .0200 .0210 .0225		64 35 34 33 32	.1094 .1100 .1110 .1130 .1160	6-40	14 -E- F G 17 64 H	2500 2570 2610 2656 2660	⁹ 16 - 18
	73 72 71 70 69	.0240 .0250 .0260 .0280 .0292 .0292		1 8 30 29 28 9	.1200 .1250 .1285 .1360 .1405 1406	8-32, 36	9 32 L	2720 2770 2810 2812 2900	⁹ 16 - 24
1 32	67 66 65 64	.0312 .0320 .0330 .0350 .0360		64 27 26 25 24 23	.1440 .1470 .1495 .1520 .1540	10-24	$ \begin{array}{c} \frac{19}{64} \\ $	2969 2969 .3020 .3125 .3160 3220	¾ - 16
	63 62 61 60 59	.0370 .0380 .0390 .0400 .0410		32 22 21 20 19	.1562 .1570 .1590 .1610 .1660	10-32	21 64 0 R 11 32 S	.3281 .3320 .3390 .3438 .3480	% - 24
<u>3</u> 64 —	58 57 56	.0420 .0430 .0465 .0469 .0520	0 - 80	11 64 17 16 15	.1695 .1719 .1730 .1770 .1800	12-24	$\begin{bmatrix} \frac{23}{64} & T \\ \frac{3}{8} & U \\ \frac{3}{8} & V \end{bmatrix}$.3580 .3594 .3680 .3750	7 ₁₆ - 14
1 16	54 53 52	.0550 .0595 .0625 .0635	1 - 64,72	3 16 12	.1820 .1850 .1875 .1890	12-28	25 64 X Y	.3970 .3906 .3970 .4040	7/16 - 20
<u>s</u>	50 49 48	.0700 .0730 .0760 .0781	2-56,64	10 9 8 7	.1935 .1960 .1990 .2010	¥-20	27 64 29 16 29	.4062 .4130 .4219 .4375 .4531	½ - 13 % - 20
64	47 46 45 44	.0785 .0810 .0820 .0860	3 - 48 3 - 56	13 64 5 4	2031 2040 2055 2090		64 <u>15</u> 31 <u>32</u> 64 <u>1</u> 33 <u>2</u>	4638 4688 4844 5000	12 - 20 1/16 - 12 1/14 - 18
<u>3</u> 32	43 42 41 40	.0890 .0935 .0938 .0960 .0990	4 - 40 4 - 48	7 32 2 UETTER 1 SOLS A	2130 2188 2210 2230 2340	Ve-28	$\begin{array}{c} 64 \\ \underline{35} \\ 64 \\ \underline{9} \\ \underline{37} \\ 64 \\ \underline{9} \\ \underline{16} \\ \underline{16} \\ \underline{16} \\ \underline{16} \\ \underline{16} \\ \underline{16} \\ \underline{17} \\ \underline{16} \\ \underline{16} \\ \underline{16} \\ \underline{16} \\ \underline{17} \\ \underline{16} \\ \underline{17} \\ \underline{16} \\ \underline{17} \\ \underline{16} \\ \underline{16} \\ \underline{17} \\ \underline{16} \\ \underline{17} \\ \underline{16} \\ \underline{16} \\ \underline{17} \\ $.5312 .5469 .5625 .5781	% - 11 % - 18

Fraction Or Drill Size	Decimal Equivalent	Tap Siza	Metric Tap	Tap Dnil mm	Decimal Equivalent
19	.5938		M1.6 x 0.35	1.25	.0492
39 32	6094		M1.8 x 0.35	1.45	.0571
64 5	6250		M2 x 0.4	1.60	.0630
41 8	6406		M2.2 x 0.45	1.75	.0689
64 21	0000	1. 10			
43 32	.0002	74-10	M25 x 0.45	2.05	0807
64 11	.6/19		May 05	2.50	ARPO.
16 16	.6875	% - 16	Masyas	2.00	1140
	.7031		MOUD X 0.0	2.30	1000
	.7188		M4 X U./	3.30	.1299
64 .	.7344		M4 5 × 0.75	3 70	1457
	.7500		M4.0 X 0.70	4.00	140/
49 9	.7656	7/6-9	MO X U.O	4.20	.1004
64 25	7812		MOXI	5.00	.1908
51 32	.7969		M/ X 1	6.00	.2362
64 13	8125	74 - 14	10.00	0.70	0000
53 16	0201		M8 X 1.25	6.70	.2638
64 27	0400		M8 X 1	7.00	.2756
55 32	.0430		M10 x 1.5	8.50	.3346
64 7	.8594		M10 x 1.25	8.70	.3425
	.8750	1-8	and the second		and the second
64 m	.8906		M12 x 1.75	10.20	.4016
	.9062		M12 x 1.25	10.80	.4252
59 06	.9219	1-12	M14x2	12.00	.4724
04 <u>15</u>	.9375		M14 x 1.5	12.50	.4921
61 16	.9531				
64 31	9688		M16 x 2	14.00	.5512
63 32	9844	1% - 7	M16 x 1.5	14.50	.5709
64 1	10000		M18 x 2.5	15.50	.6102
1	1.0000	111. 10	M18x15	16.50	.6496
7/64	1.0469	178-12			
11/64	1.1094	14-1	M20 x 25	17.50	6890
1%	1.1250		M20 v 15	18 50	7289
1"Via	1.1719	1% - 12	100 4 25	10.00	7677
17/32	1.2188	1%-6	100 4 16	20.50	9071
11/4	1,2500		M22 X 1.5	20.50	.00/1
1%4	1,2969	1% - 12	101.00	01.00	0000
111/30	1.3438	1%-6	1124 x 3	21.00	.0200
1%	1,3750		M24 X 2	22.00	.8001
17/.	1.4210	1% - 12	M2/ X 3	24.00	.9449
1%	15000		M2/ X2	25.00	.9843
1/2		Contractory of the local division of	100.005	00 50	10100
PIP	E THHEAD SIZES (NPSC	1 States and the states	100 x 3.5	20.00	1.0400
THREAD	DRILL THREAD	DRILL	MSUX2	20.00	1.1024
W-27	1/2 11/2 11/2	1%	M33 X 3.5	29.50	1.1614
¥-18	7/1 2-11%	21/m	MSS X Z	31.00	1.2205
34-18	×/44 21/2-8	2"/s			
1/2-14	1/12 3-8	3%	M36 x 4	32.00	1.2598
3/4 - 14	We 3%-8	3%	M36 x 3	33.00	1.2992
1-11%	1% 4-8	4%	M39 x 4	35.00	1.3780
116 . 1116	114		M39 x 3	36.00	1.4173

Drill Size Factors

- Tapped holes deeper than 1.5 diameters often call for a larger tap drill.
- Blind holes often require larger tap drills to reduce loads on the tap caused by chip buildup in the hole.
- Materials that tend to gall when tapped or when fasteners are installed should have larger drilled holes. Under tapping pressure, soft materials tend to extrude and enter the root area, necessiating a larger drilled hole.
- Materials that don't readily dissipate heat, should have larger holes to reduce the tooth contact area and minimize heat build up.
- When making threads with high helix angles using a larger tap drill will help reduce tap breakage.

Drill Depth Clearance in Blind Holes

Chamfer Teeth + One Pitch + 1mm = Clearance

- Bottom Tap has 1 to 2 teeth in chamfer or lead.
- Semi Bottom Tap has 2 to 3 teeth in lead.
- Modified Bottom has 2 to 4 teeth in lead.
- Plug Tap has 3 to 5 teeth in lead.
- Modified Plug has 5 to 7.
- Roll Form Tap has typically 2 1/2.

Example:

Tap Recommendations For Specific Materials

Tap Manufacturers offer their own unique geometries for specific materials and applications. This chart is meant to provide general information. For a specific tap recommendation for your application, please consult your tap supplier.

Standard Straight Fluted Tap With 6 to 8 Threads Chamfer Length or Lead.

1//1 -	CHAMFER	LENGTH
		>

These taps do not transport the chips out of the hole. For this reason, they should not be used for deep hole tapping. They work best in shallow depth through holes and in materials that produce short chips.

Straight Fluted Taps With Spiral Point With 3.5 to 5 Threads Chamfer Length or Lead.

These taps push the chips forward. The chips are curled up to prevent clogging in the flutes. They are used for through holes.

Left Hand Spiral Fluted Tap With Approximately 12 Degrees Spiral Flutes With 3.5 to 5 Threads Chamfer Length.

These taps are mostly used in thin walled parts or for holes interrupted by cross holes or longitudinal slots.

Workpiece Materials	Recommended Tap Surface Treatments
Cast Iron	Nitrided or TiN
Brass, Short Chipping	Nitrided
Cast Aluminum	Nitrided
Short Chip Hard	Nitrided or TiN
Workpiece Materials	Recommended Tap Surface Treatments
Aluminum Long Chip	Bright, or Cr or TiN
Exotic Alloys	Nitrided or TiN
Stainless Steel	Nitrided or TiN
Steel	Bright or TiN or TiCN
Workpiece Materials	Recommended Tap Surface Treatments
Aluminum Long Chip	Bright, or Cr or TiN
Exotic Alloys	Nitrided or TiN

Nitrided or TiN

Bright or TiN or TiCN

(Continued)

Stainless Steel

Steel

Tap Recommendations for Specific Materials (Continued)

Right Hand Spiral Fluted Tap With Approximately 15 Degrees Spiral Flutes With 3.5 to 5 Threads Chamfer Length.

The spiral flutes transport chips back out of the hole. These taps are used in blind holes less than 1.5 times the tap diameter deep with materials that produce short chips.

Right Hand Spiral Fluted Tap With 40 Degrees to 50 Degrees Spiral Flutes.

The greater helix angle provides good transport of chips back out of the hole. These taps are used only in blind holes in materials that produce long chips. They can also be used in deeper holes up to 3 times the tap diameter.

Rake Angle

The best rake angle for a tap depends on the material. Materials that produce long chips normally require a tap with greater rake angle. Materials that produce short chips require a smaller rake angle. Difficult materials like Titanium or Inconnell require a compromise between greater rake angle for longer chips and smaller rake angle for more strength.

Workpiece Materials	Recommended Tap Surface Treatment				
Cast Aluminum	Nitrided				
Titanium	Nitrided or TiN				
Stainless Steel	Bright or TiN				
Steel	Bright or TiN or TiCN				

Workpiece
MaterialsRecommended Tap
Surface TreatmentsAluminum Long ChipBright, or Cr or TiNStainless SteelBright or TiNSteel Alloy Cr-NiBright or TiN or TiCNSoft MaterialBright

Tap Recommendations for Specific Materials (Continued)

Relief Angle In The Lead Of A Tap

A small relief angle can be used in soft materials. Harder materials like stainless steel can be cut easier with a tap having a greater relief angle which reduces the friction. Tough materials like Inconnel and nickel can be cut more easily with an even greater angle.

The relief angle is smaller on taps for blind holes that on taps for through holes so that the chip root can be sheared off when the tap reverses without breaking the taps cutting edge.

Chamfer Length (Lead)

The actual cutting of the thread is done by the lead of the tap. When there are more threads in the chamfer length or lead the torque is reduced, producing the thread is much easier, and the life of the tap will be increased. In blind holes where there is not enough room to drill deep enough for a tap with a longer lead, taps with short leads are used. In some cases the lead of the tap is reduced to as little as 1.5 threads. This greatly increases torque and reduces tap life. Even when using taps with shortened lead it is still important to drill deep enough for adequate clearance. It is recommended to allow one thread length plus one mm beyond the lead of the tap as drill clearance.

Relief Angle In The Thread Profile (Pitch Diameter Relief)

The relief angle effects true to gage thread cutting, and also the free cutting ability and life of the tap. It has an effect on how the tap is guided when it enters the hole. If the relief angle is too great pitch guidance and self centering of the tap can not be guaranteed especially in soft materials. In materials like stainless steel or bronze the relief angle should be larger to allow free cutting and to allow more lubrication to reach the cutting and friction surfaces. A bigger relief angle can allow higher tapping speed provided the tap is guided concentrically into the hole by the machine and tap holder.

Roll Form Taps

These taps form the thread rather than cut. Since no chips are produced they can be used in blind or through holes. Cold forming is possible in all ductile materials. Advantages include no waste in the form of chips, no mis-cutting of threads, no pitch deviation, higher strength, longer tool life, and higher speed. Please note that the core hole diameter must be larger than with a cutting tap. Good lubrication is important, more torque is required, and the minor diameter of the thread will appear rough due to forming process.

Terms for Tap Features

Common Thread Terms

Allowance: The minimum clearance or maximum interference which is intended between mating parts.

Angle of thread: The angle included between the flanks of a thread measured in an axial plane.

Back of taper: A slight taper on threaded portion of the tap making the pitch diameter near the shank smaller than that at the chamfer.

Basic: The theoretical or nominal standard size from which all variations are made.

Chamfer: The tapered and relieved cutting teeth at the front end of the threaded section. Common types of chamfer are: Taper, 8 to 10 threads long; Plug, 3 to 5 threads and Bottoming, 1.5 threads.

Crest: The top surface joining the two sides or flanks of a thread.

Cutting face: The leading side of the land.

Flute: The longitudinal channels formed on a tap to create cutting edges on the thread profile.

Heel: The following side of the land.

Height of thread: In profile, distance between crest and bottom section of thread measured normal to the axis.

Hook face: A concave cutting face of the land. This may be varied for different materials and conditions.

Interrupted thread: Alternate teeth are removed in the thread helix on a tap having an odd number of flutes.

Land: One of the threaded sections between the flutes of a tap. Lead of thread: The distance a screw thread advances axially in one turn.

Major diameter: The largest diameter of the screw or nut on a straight screw head.

Minor diameter: The smallest diameter of the screw or nut on a straight screw head.

Neck: The reduced diameter; on some taps, between the threaded portion and the shank.

Pitch: The distance from a point on one thread to a corresponding point on the next thread, measured parallel to the axis.

Pitch diameter: On a straight screw thread, the diameter of an imaginary cylinder where the width of the thread and the width of the space between threads is equal.

Point diameter: The diameter at the leading end of the chamfered portion.

Radial: The straight face of a land, the plane of which passes through the axis of the tap.

(Continued)

<u>TAPINATIC</u>

Common Thread Terms (Continued)

Rake: The angle of the cutting face of the land in relation to an axial plane intersecting the cutting face at the major diameter.

Relief: The removal of metal behind the cutting edge to provide clearance between the part being threaded and a portion of the threaded land. Also, see back taper.

Chamfer Relief: The gradual decreasing land height from cutting edge to heel on the chamfered portion of the tap land to provide radial clearance for the cutting edge.

Con-Eccentric Relief: Radial relief in the thread form starting back of a concentric margin.

Eccentric Thread Relief: Radial relief in the thread form starting at the cutting edge and continuing to the heel.

Root: The bottom surface joining the flanks of two adjacent threads.

Side of flank of thread: The surface of the thread which connects the crest to the root.

Shank: The portion of the tap by which it is held and driven.

Spiral point: An oblique cutting edge ground into the lands to provide a shear cutting action on the first few threads.

Square: The squared end of the tap shank.

Thread: The helical formed tooth of the tap which produces the thread in a tapped hole.

Thread lead angle: The angle made by the helix of the thread at the pitch diameter; with a plane perpendicular to the axis.

Threads per inch: The number of threads in one inch of length.

Thread: SINGLE: A thread which is equal to pitch. DOUBLE: A thread in which lead is equal to twice the pitch. TRIPLE: A thread in which lead is equal to triple the pitch.

Coarse vs. Fine Threads

Coarse Threads

- For most applications, course threads offer these advantages:
- Easier and faster assembly, providing a better start with less chance of cross threading.
- Nicks and burrs from handling are less liable to affect assembly.
- They are less likely to seize in temperature applications and in joints where corrosion will form.
- Less prone to strip when threaded into lower strength metals.
- More easily tapped in brittle materials and or materials that crumble easily.

Fine Threads

Fine threads may make for a superior fastener for applications with specific strength or other requirements.

- They are about 10% stronger that coarse threads due to their greater cross-section area.
- In very hard materials, fine threads are easier to tap.
- They can be adjusted more precisely because of their smaller helix angle.
- Where length of engagement is limited, they provide greater strength.
- Thinner wall thickness can be used because of their smaller thread cross section.

Machining Recommendations For Cold Forming Tags

Cold Forming Internal Threads With Taps: Internal threads can be produced by a cold forming or swaging process. The desired thread is formed in the metal under pressure and the grain fibers, as in good forging, follow the contour of the thread. These grain fibers are not cut away as in conventional tapping. The cold forming tap has neither flutes nor cutting edges and therefore, it produces no chips and cannot create a chip problem. The resulting thread has a burnished surface.

Material Recommended: Care must be taken to minimize surface damage to the hole when tapping materials which are prone to work harden. This may be accomplished by using sharp drills, correct speed and feeds. Surface damage may cause torque to increase to a point of stopping the machine or breaking the tap.

Cold forming taps have been recommended for threading ductile materials. Examples of material classes which have been tapped are:

- · Low carbon steels
- Leaded steels
- Austenitic stainless steels
- Aluminum die casting alloys (low silicon)
- Wrought aluminum alloys (ductile)
- Zinc die casting alloys
- Copper and copper alloys (ductile brasses)

Cold Forming Tap Application Information

Tapping Application The Same: Except for changes in hole size, the application of cold forming taps differs in no way from conventional cutting taps.

Blind Hole Tapping Possible: Whenever possible, in blind holes, drill or core deep enough to permit the use of the plug style taps. These tools, with four threads of taper, will require less torque, will produce less burr upon entering the hole, and will give greater life.

Torque: Where the operation calls for 75% of thread or less, the torque required varies with the material from no additional torque to 50% additional torque. On most applications, therefore, conventional equipment is suitable for driving cold forming taps.

No Lead Screw Necessary: These taps work equally well when used in a standard tapping head, automatic screw machine, or lead screw tapper. It is unnecessary to have lead screw tapping equipment in order to run the cold forming tap because the tool will pick up its own lead upon entering the hole.

Standard Lubrication: In general it is best to use a good cutting oil or lubricant rather than a coolant for cold forming taps. We recommend MQL Systems Dry-Cut Cutting Fluid.

Machine Recommendations for Cold Forming Tags (Continued)

Spindle Speeds: For most materials, spindle speeds may be increased over those recommended for conventional cutting type taps. Generally, the tap extrudes with greater efficiency at higher RPMs but it is also possible to run the tap at lower speeds with satisfactory results.

Counter Sinking or Chamfering Helpful: Because these taps displace metal, some metal will be displaced above the mouth of the hole during tapping. For this reason it is best to countersink or chamfer the hole prior to tapping, so that the extrusion will raise within the countersink and not interfere with the mating part.

Tapping Cored Holes Possible: Cored holes may be tapped with these taps provided the core pins are first changed to form the proper hole size. Because core pins have a draft or are slightly tapered the theoretical hole size should be at a point on the pin that is one-half the required length of engagement of the thread to be formed. In designing core pins for use with these taps, a chamfer should be included on the pin to accept the vertical extrusion.

Drill Selector Chart: The chart shown previously is based upon a formula derived from research statistical data and is designed to reflect the flow characteristics of all ductile materials. Laboratory experiment proved that there are only slight differences in the flow characteristics of the different metals as related to internal threading. It will be necessary to deviate slightly from the recommended hole size when tapping extremely ductile or extra hard metals.

The formula for these theoretical hole size determinations is as follows:

Theoretical Hole Size

(core, punch or drill size) + Basic Tap 0.D. minus .0068 x % of Thread Threads per Inch

Example: To determine the proper drill size to form 65% of thread with a 1/4-20 cold form tap.

 $\frac{\text{Basic Tap 0.D.} = 1/4" \text{ or } .250}{\text{Threads per Inch} = 20}$

drill size = .250 minus $\frac{.0068 \times 65}{20}$

drill size = .228

Tapping Torque and Horse Power

Note: Numbers are in inch-pounds. All values given are for 1010 mild steel. For other materials multiply the values by the factors given in the torque and horsepower calculation table.

Tapping Torque & Horsepower Requirements Torque Setting Data For HSS Straight Flute Plug Taps

Tap Size And Pitch	Minimum Tapping Torque	Maximum Tapping Torque	Tap Breaking Torque (low Strength)	Tap Breaking Torque (High Strength)	Required Horsepower (Minimum)	Tap Holder Setting (Normal)	Tap Holder Setting (Minimum)	Tap Holder Setting (Maximum)
#0-#2								
NC & NF	10	18	25	50	1/4	20	15	25
#3 & #4								
NC & NF	10	20	30	50	1/4	20	15	30
#5 & #6								
NC & NF	10	20	30	50	1/4	20	15	30
8-30	20	30	40	60	1/4	25	20	40
8-32	20	30	40	60	1/4	25	20	40
10-32	20	30	40	60	1/3	25	20	40
10-24	25	50	40	60	1/3	30	25	50
12-28	25	50	40	70	1/3	30	25	50
12-24	25	50	40	70	1/3	30	25	50
1/4-28	30	60	50	100	1/2	40	30	60
1/4-20	40	80	50	100	1/2	50	40	80
5/16-24	40	80	75	150	1/2	60	50	100
5/16-18	60	120	75	150	1/2	90	80	150
3/8-24	60	120	180	260	3/4	90	80	150
3/8-16	100	200	180	260	3/4	130	110	220
7/16-20	80	160	180	300	3/4	130	110	220
7/16-14	100	200	180	300	1"	200	180	300
1/2-20	100	250	300	600	3/4	300	300	450
1/2-13	150	300	300	600	1"	300	300	450
9/16-18	150	350	500	800	3/4	350	350	500
9/16-12	200	500	500	800	1" 1/4	350	350	500
5/8-18	200	600	800	1200	3/4	450	450	650
5/8-11	300	800	800	1200	1" 1/2	450	450	650
3/4-16	300	800	1000	1500	1"	650	650	950
3/4-10	500	1000	1000	1500	1" 3/4	650	650	950
7/8-14	500	1000	1500	2000	1"	850	850	1500
7/8-9	800	1500	1500	2000	2	850	850	1500
1"-12 & 14	700	1800	2000	2500	1" 1/2	1100	1100	1800
1"-8	1000	1800	2000	2500	2" 1/2	1100	1100	1800

TAPNIATTC

Tapping Torque and Horse Power (Continued)

Torque Setting Data For Pipe Taps

Tap Size And Pitch	Minimum Tapping Torque	Maximum Tapping Torque	Tap Breaking Torque (low Strength)	Tap Breaking Torque (High Strength)	Required Horsepower (Minimum)	Tap Holder Setting (Normal)	Tap Holder Setting (Minimum)	Tap Holder Setting (Maximum)
1/16-27	60	120	75	150	1/2	90	80	150
1/8-28	80	160	180	300	1/2	130	110	220
1/4-18	200	500	500	800	1	350	350	500
3/8-18	300	600	700	1000	1	400	400	550
1/2-14	800	1300	1500	2000	1 1/2	850	800	1400
3/4-14	1000	1500	1800	2300	1 3/4	1200	1000	1600

Torque And Horsepower Calculation Factors

Material	Factor	Carbon (Mild) steel		Free Cu	tting Steel	Alloy	Steel	Alloy Steel	
Aluminum	.2	1008	-1095	1111	-1213	1330	-8642	1330	-8642
Brass	.4								
Bronze	.4	BHN	Factor	BHN	Factor	BHN	Factor	BHN	Factor
Cast Iron Copper	.0	90	1.0	140	.7	175	.9	240	1.5
Magnesium	.5	130	1.1	170	.8	190	1.0	250	1.6
Malleable Iron	.7	170	1.2	230	.9	200	1.1	330	2.1
Zinc	.4	190	1.3			205	1.2	390	2.5
Titanium	1.4	250	1.4			210	1.3	470	2.9

Tapping Torque vs. Thread Strength

Suggested Percentage Of Full Threads In Tapped Holes

It stands to reason that it takes more power to tap to a full depth of thread than it does to tap to a partial depth of thread. The higher the metal removal rate, the more torque required to produce the cut.

It would also stand to reason that the greater the depth of thread, the stronger the tapped hole. This is true, but only to a point. Beyond that point (usually about 75% of full thread) the strength of the hole does not increase, yet the torque required to tap the hole rises exponentially. Also, it becomes more difficult to hold size, and the likelihood of tap breakage increases. With this in mind, it does not make good tapping sense to generate threads deeper than the required strength of the thread dictates.

As a general rule, the tougher the material, the less the percentage of thread is needed to create a hole strong enough to do the job for which it was intended. In some harder materials such as stainless steel, Monel, and some heat-treated alloys, it is possible to tap to as little as 50% of full thread without sacrificing the usefulness of the tapped hole.

workpiece material	deep hole tapping	average commercial work	thin sheet stock or stampings
hard or tough cast steel drop forgings Monel metal nickel steel stainless steel	55% 65%	60% 70%	-
free-cutting aluminum brass bronze cast iron copper mild steel tools steel	60% 70%	65% 75%	75% – 85%
300 200	TORQUE REQUIRED	D FOR TAPPING	
100 C	40 50	50 70 80	TAPPED HOLE

TAPINATIC'

Standard Tap Dimensions (ANSI Shanks)

能力		Carlos St.		100 A 34 1	5	Tap Dimensions - Inches				
Nomina Range-	inches	Mach. Scrow Size	Nominal Fractional Diameter	Nominal Metric Diameter	Y L	Overall Length	Thread Longth	Square Lungth	Shank Diameter	Size of Square
Over	To (Incl.)	Na	inches	Millenetors	E	A	8	¢	D	200.3
.052	.065	0	\$/15	M1.6	1	158	5/16	376	.145	.110
.065	.078	1		M1.8	1	1 11/16	3/8	3/16	.141	.110
.078	.091	2		M2, M2.2	1	1 34	7/16	3/16	.141	.110
.091	.104	3	3/32	M2.5	1	1 13/16	1/2	3/16	.141	.110
.104	.117	4	1. 192			17/8	918	316	,141	.110
.117	.130	5	1/8	M3, M3.15	1	1 15/16	58	3/16	.141	.110
.130	.145	6		M3.5	1	2	11/16	3/16	,141	.110
.145	.171	6	5/32	M4	1	2 1/8	3/4	1/4	.168	.131
.171	.197	10	3/16	M4.5, M5	1	2 3/8	7/8	1/4	.194	.152
.197	.223	12	7/32	A. S. S.	1	2 3/8	15/16	9/32	.220	.165
223	260	14	1/4	M6. M8.3	2	2 12	1	5/16	255	.191
260	323		5/16	M7 MR	2	2 23/32	1 1/8	3/8	318	238
323	385	1 1	3/8	M10	2	2 15/16	1 1/4	7/16	.381	286
385	448		7/16		3	3 532	1 7/16	13/32	323	242
.448	.510		1/2	M12, M12.5	3	3 38	1 21/32	7/16	.367	275
510	679		9/16	MIA		3 19/22	1 21/72	1/2	420	122
679	495		5/9	1116	~	3 1916	1 13/16	0116	(80)	360
695	700		1106	1110	2	4 1/22	1 12/16	610	642	406
200	760	1 1	9/4	W10	3	4 104	2	11/16	590	449
760	823		13/16	M20	3	4 15/32	2	11/16	652	489
	.000		1010		~	4 1000	0 700			
.823	.885		7/8	MZZ	3	4 11/16	2 1/32	3/4	.69/	523
.885	.948	1 1	15/16	M24	3	4 29/32	2 1132	34	.760	510
.948	1.010		1	M25	3	518	2 1/2	13/16	2000	.600
1.010	1.073	1 1	1 116	M27	3	518	2 1/2	//8	,5350	510
1.0/3	1,135		1 18		3	5 //10	2 9/16	1/8	.890	
1.135	1.198		1 3/16	M30	3	5 7/16	2 9/16	1	1.021	.766
1.198	1.260	1 1	1 1.14		3	5 34	2 9/16	1	1,021	.766
1.250	1.323		1 5/16	M33	3	5 34	2 9/16	1 1/16	1.108	.831
1.323	1.385		1 38		3	6 1/16	3	1 1/15	1,108	.831
1.385	1.448		1 7/16	M36	3	6 1/16	3	1 1/8	1.233	.925
1.448	1.510		1 1/2		3	6 3/8	3	1 1/8	1.233	925
1.510	1.635	1 1	158	M39	3	6 11/16	3 3/16	1 1/8	1,305	.979
1.635	1,750	1 1	1 34	M42	3	7	3 3/16	1 1/4	1.430	1.072
1.760	1.885		1 7.8		3	7 5/16	3 9/16	1 1/4	1.519	1.139
1.885	2.010		2	M48	3	7 58	3 9/16	1 3'8	1.644	1.233
2.010	2.135		2 18		3	8	3 9/16	1.3/8	1,769	1.327
2.135	2,260	1	2 14	M56	3	8 14	3 9/16	1 7/16	1.894	1,420
2,260	2.385		2 38		3	8 1/2	4	1 7/16	2.019	1.514
2.385	2,510		2 12		3	8 34	4	1 1/2	2.100	1.575
2.510	2.635		2 58	M54	3	8 34	4	1 1/2	2.225	1.669
2 6 2 5	2760		2.14		3	9 1/4	4	1 9/16	2 350	1.762
2 760	2 995		2 75	M72		9 1/4	4	1 9/16	2.475	1.856
2 885	3,010		3	mra	2	9.34	4 9/16	1.58	2 543	1 907
3010	3125		319	1 3	3	934	4916	158	2653	2 001
3.135	3,260		3 14	M80	3	10	49'16	134	2,793	2.095
0.000	0.005		110			10	40%5	1.97	2 692	0 100
0.000	0.000	1 1	3.38	P 8	3	10	4 3 10	2	2/09	2266
3.303	3.510	1	360	1000	3	10 04	415/10	5	9 199	2360
3.510	3.635		356	NOU	0	10 14	4 13/10	210	9.947	0.419
3 335	3.160		334		3	10 1/2	5010	210	321/	2,413
3.700	3,000		9 //0		3	ių ne	3310	2.00	0.046	2.00
3.885	4.010	1 1	4	M100	3	10.34	55'16	21/4	3,467	2.600

TAPINATIC'

Standard Tap Dimensions (DIN Standard 371)

Metric Taps To Din STD (371) Metric Iso Threads

dı mm	P	Li mm	Le mm	La mma	da mm	k mm	L, mm	N
			and a second sec	Constant of the local division of the local				
MIG	35	a)	5		25	21	5	2
10		5		10	28	21	5	2
MC.		ž		10	28	21	Š	3
112	25	ě	5	10	28	21	5	ž
MD2	45	6	š	10	28	21	5	3
102	25	6	5	10	28	21	5	2
102	L	5	5	10	28	21	5	3
1025	35	50	5	12	28	21	5	2
1025	45	50	5	12	28	21	5	3
M26	45	ñ	5	12	28	21	5	3
MG	*		6	13	35	27	6	2
MG	5	96	ň	13	35	27	6	3
M35	35	56	7	17	4	3	6	2
M25	6	55	7	17	4	3	ě	3
1.44	5	63	7	17	45	3.4	6	2
MAG	Ĩ	63	7	17	45	3.4	6	3
MAS	5	70	7	17	6	4.9	8	2
MI5	75	70	8	18	6	49	8	3
M5	5	70	8	18	6	49	8	3
15		20	8	18	6	4.9	8	3
145	8	70	-8	18	6	4.9	8	3
MG	5	80	10	22	6	4.9	8	3
MG	.75	80	10	22	6	4.9	8	3
MG	1	80	10	22	6	4.9	8	3
M7	.75	80	10	22	7	5.5	8	3
M7	1	80	10	22	7	5.5	8	3
MB	1	90	13	28	8	62	9	3
MB	1.25	90	13	28	8	6.2	9	3
MIO	1	90	13	28	8	6.2	9	3
MID	1.50	100	15	32	10	8	11	3

TAPINATIC

Standard Tap Dimensions (DIN Standard 374)

Metric Taps To Din STD (374) Metric Iso Threads

dı mm	P mm	U mm	ե mm	d: mm	k mm	L. mm	K mm
MB	.75	80	10	6	4.9	8	3
NB		90	13	6	4.9	8	3
N9	1 26	90	13	7	55	8	3
MIO	1	90	14	7	55	8	3
MIO	1.25	100	15	7	5.5	8	3
MI2	1	100	16	9	7	10	4
M12	1.25	100	16	9	7	10	4
MIZ	15	100	20	9	6	10	2
MM	125	100	18	11	ő	12	2
M14	1.5	100	20	11	9	12	4
M16	1	100	18	12	9	12	4
M16	1.5	100	22	12	9	12	4
MSB	1	110	18	14	11	14	4
MID	13	125		14	11	14	2
M20	i	125	20	16	12	15	4
M20	1.5	125	24	16	12	15	4
M20	2	140	25	16	12	15	4
M22	1	125	20	18	14.5	17	4
M/2 M/2	15	120	24	10	14.5	17	2
MDA	1	140	n	18	14.5	17	5
M24	15	140	26	18	14.5	17	5
M24	2	140	28	18	14.5	17	5
M25	1.5	140	26	18	14.5	17	4
M25	1.5	140	26	18	14.5	1/	1
N27	15	140	29	20	16	19	2
M27	2	140	28	20	16	19	4
M28	1.5	140	28	20	16	19	4
M28	2	140	28	20	16	19	4
MOO	1	150	26	22	18	21	1
MOU MOD	15	100	20	27	10	21	;
M32	15	150	28	22	18	21	4
M32	2	150	28	22	18	21	4
M33	1.5	160	28	25	20	23	4
M33	2	160	30	25	20	23	1
M34	12	170	30	28	22	2	;
MOG	15	170	30	28	22	25	4
MOG	2	170	30	28	22	25	4
MOG	3	200	36	28	22	25	4
MG8	1.5	170	30	28	22	25	5
M09	15	170	30	32	24	77	3
M30	3	200	40	32	24	27	2
M40	15	170	30	32	24	27	5
M40	2	170	30	32	24	27	4
M42	15	170	30	32	24	27	5
MI2	3	200	40	32	24	2/	2
M45	2	180	20	36	29	30	5
MS	ŝ	200	40	36	29	32	4
M48	1.5	190	2	36	29	32	5
M48	2	190	32	36	29	32	5
M48	3	25	10	36	20	20	2
MSO	10	100	30	30	29	20	5
M52	15	190	2	40	32	35	5
M52	2	190	32	40	32	35	5
M62	3	225	45	40	2	35	5
MOG	3	20	30	40	2	20	2

TAPINATIC'

Standard Tap Dimensions (DIN Standard 376)

Metric Taps To Din STD (376) Metric Iso Threads

dı mm	P	Li mm	Le mm	La mm	d: mm	k mm	L: mm	N
			1000		1.			12
M1.6	.35	40	5		25	21	5	2
M2	.25	45	4	10	2.8	2.1	5	2
M2	A	45	4	10	2.8	2.1	5	3
M22	25	45	5	10	2.8	2.1	5	2
M22	.45	45	5	10	2.8	2.1	5	3
M2.3	25	- 45	5	10	2.8	2.1	5	2
M23	4	45	5	10	2.8	21	5	3
M25	.35	50	5	12	2.8	21	5	2
M25	.45	50	5	12	2.8	2.1	5	3
M2.6	.45	50	5	12	2.8	21	5	3
MG	.35	56	6	13	3.5	27	6	2
MG	5	56	6	13	3.5	27	6	3
M35	35	56	7	17	4	3	6	2
M35	6	56	7	17	4	3	6	3
1.44	5	63	7	17	45	3.4	6	2
MA	3	63	7	17	4.5	3.4	6	3
M45	5	70	7	17	6	4.9	8	2
MI.5	.75	70	8	18	6	4.9	8	3
M5	.5	70	8	18	6	49	8	3
M5	.75	70	-8	18	6	4.9	8	3
M5	.8	70	-8	18	6	4.9	8	3
MG	5	80	10	22	6	4.9	8	3
MG	.75	80	10	22	6	4.9	8	3
MG	1	80	10	22	6	4.9	8	3
M7	.75	80	10	22	7	5.5	8	3
M7	1	80	10	22	7	5,5	8	3
MB	1	90	13	28	8	62	9	3
MB	1.25	90	13	28	8	6.2	9	3
MIO	1	90	13	28	8	6.2	9	3
MID	150	100	15	30	10	8	11	3

JIS

di mm	Pmm	Lı mm	L2 mm	d2 mm	k mm	L4 mm	N
MI	.25	30	8	3	2.6	5	2
M12	.25	32	9	3	2.5	5	2
M1.4	3	34	11	3	2.5	5	2
M1.6 M1.7	.35	30	13	33	25	55	22
M1.8	.35	36	13	3	2.5	5	2
M2	A 45	40	15	3	2.5	5	2
M2.3	.40	42	15	3 3	2.5	5	3 States
M2.5	.45	44	16	3	2.5	5	3
M2.b	.45	44	18	4	2.5	6	3
M3.6	.6	48	18	4	3.2	6	š
M4 M4 F	.7	52	20	1 5	4 And the second second		
Mb	.6	õ	22	5.5	4.5	7	3
M6		62	24	6	4.5	7	3
M8	1.25	70	20	62	5	8	3
M9	1.25	72	30	7	5.5	8	ă 3
M10	1.5	75	32		5.5	8	3
M12	1.75	82	38	8.5	6.5	9	4
M14	2	88	42	10.5	8	11	4
MIB	25	95 100	45 48	12.5	10	13	4
M20	2.5	105	50	15	12	15	4
M22 M24	2.5	115	56	17	13	16	4
M27	3	130	62	20	16	18	4
M30	3.5	135	65	23	17	20	4
MISS MG6	3.5	145 155	/0 75	25	19 24	22	
M39	4	165	80	30	23	26	4
M42	4.5	175	85	32	26	30	4
M45 M48	4.5	185	90 90	38	28	30	4

TAPINATIC

Standard Pipe Tap Dimensions (ANSI/DIN)

Taper Pipe Taps

Nominal	Threads/In		# of Flutes		Overall	Length of	Square	Shank	Size of
Size	Carbon Steel	High Steel	Regular	Interrupted	Length A	Thread B	Length C	Diameter D	Square E
1/6	-	27	4	-	2 1/8	11/16	38	.3125	234
1/8	27	27	4	5	21/8	34	3/8	.3125	234
1/8	27	27	4	5	2 1/8	34	3'8	.4375	328
1/4	18	18	4	5	27/16	1 1/16	7/16	.5625	.421
38	18	18	4	5	2916	1 1/16	1/2	.7000	.531
1/2	14	14	4	5	31/8	1 3/8	5/8	.6875	515
34	14	14	5	5	3 1/4	1 3/8	11/16	.9063	.679
1	11 1/2	11 1/2	5	5	33/4	13/4	13/16	1.1250	.843
1 1/4	11 1/2	11 1/2	5	5	4	1 3/4	15/16	1.3125	.984
1 1/2	11 1/2	11 1/2	7	7	4 1/4	13/4	1	1.5000	1.125
2	11 1/2	11 1/2	7	7	4 1/2	13/4	1 1/8	1.8750	1.406
21/2	8	-	8	-	51/2	29'16	1 1/4	2.250	1.687
3	8	-	8		6	25/8	13/8	2.625	1.968

Straight Pipe Taps

Nominal	Threads/In		# of Flutes		Overall	Length of	Square	Shank	Size of
Size	Carbon Steel	High Steel	Regular	Interrupted	Length A	Thread B	Length C	Diameter D	Square E
1.8		27	4	-	2 1/8	34	3/8	.3125	234
1.8	-	27	4	-	2 1/8	34	3/8	.4375	328
1/4	_	18	4		2 7/16	1 1/16	7/16	.5625	.421
38	-	18	4	-	29/16	1 1/16	1/2	.7000	.531
12	-	14	4	-	3 1/8	13/8	5/8	.6875	.575
34	_	14	5	_	3 1/4	13/8	11/16	.9063	.679
1	-	11 1/2	5	()	334	13/4	13/16	1.1250	.843

Din Shank Pipe Taps NPT

Nominal	Threads/In		# of Flutes		Overail	Length of	Square	Shank	Size of
Size	Carbon Steel	High Steel	Regular	Interrupted	Length A	Thread B	Length C	Diameter D	Square E
1/6	-	27	4	-	21/8	11/16	38	.3125	234
1/8	27	27	4	5	21/8	34	3'8	.3125	234
1/8	27	27	4	5	2 1/8	34	38	.4375	328
1/4	18	18	4	5	27/16	1 1/16	7/16	.5625	.421
38	18	18	4	5	29'16	1 1/16	1/2	.7000	.531
1/2	14	14	4	5	31/8	1 3/8	5/8	.6875	515
34	14	14	5	5	3 1/4	13/8	11/16	.9063	.679
1	11 1/2	11 1/2	5	5	33/4	13/4	13/16	1.1250	.843
1 1/4	11 1/2	11 1/2	5	5	4	1 3/4	15/16	1.3125	.984
1 1/2	11 1/2	11 1/2	7	7	4 1/4	1 3/4	1	1.5000	1.125
2	11 1/2	11 1/2	7	7	4 1/2	13/4	11/8	1.8750	1.406
21/2	8		8	-	51/2	29'16	1 1/4	2.250	1.687
3	8		8	-	6	25/8	13/8	2.625	1.968

Class of Threads, H Limits

Classes Of Threads

There are (3) established Classes of Thread, designated in the unified series by adding: "A" for Screws and "B" for Nuts (or other intenal threads) to show definite limits and tolerances. Class 1B Thread is where a 1A screw can run in readily for quick and easy assembly. The hole is classified as 1B. The fit is a 1B thread, (very seldom used in modern metal working)

Class 2B Thread

Consists of a 2A screw in a 2B hole. 2B thread has wide applications. It is used to accomodate plating, finishing and coating to a limited extent and therefore, has fair tolerance allowances.

Class 3B Thread

3A screw in a 3B nut or internal threaded hole, used where tolerance limits are close.

GH Numbers

GH Numbers are listed below. "G" designates Ground Thread. "H" designates the pitch diameter is on high side of basic. These two letters (GH) are followed by a numeral indicating the Tolerance of Pitch diameter oversize.

H=Above Basic

- H1 = Basic to Plus .0005
- H2 = Basic Plus .0005 to Plus .0010
- H3 = Basic Plus .0010 to Plus .0015
- H4 = Basic Plus .0015 to Plus .0020
- H5 = Basic Plus .0020 to Plus .0025
- H6 = Basic Plus .0025 to Plus .0030
- H7 = Basic Plus .0030 to Plus .0035 L=Below Basic

TAPNATTC

Class of Threads, H Limits (Continued)

Relation Of Tap Pitch Diameter to Basic Pitch Diameter

American Tap Manufacturers use a series of tap pitch diameter limits. These limits feature a .0005 tolerance in tap sizes #0 Thru 1" and a .001" or greater tolerance in tap sizes above 1" thru 1 1/2" diameter. **Example:** 1/4-20. Relationship between Tap Pitch diameter limits and basic nominal pitch diameter.

Notes:

- 1. A tap cannot produce a class of thread it can produce a tapped hole within specific product limits.
- 2. Since the tap is used only in tapping a hole or producing an internal thread, a tap has no control over the fitting properties of the mating external thread.
- 3. To produce what is commonly referred to as a class of thread both external and internal threads must be within their respective product limits. Only when both members of a thread assembly fall within their desired class limits can the proper fit be assured.
- 4. The acceptability of any class of threaded hole is determined only by an accurate "G0" or "HI" Thread plug gage of corresponding class. The acceptability of the male part with an external Thread is also determined by a corresponding "G0" or "L0" Thread Ring gage.
- 5. Tap limits refer to the various sizes of tap manufactured. A tap whould be selected which will produce an internal Thread within the desired product limit. Tap limits are designated as L1, H1, H2, H3 etc.
- 6. Although ground taps are produced to precision tolerances under closely controlled manufacturing processes and are guaranteed for accuracy of individual elements, there is always the possibility of the presence of unknown factors which can be a detriment to good tap performance.

Surface Treatments for Taps

Nitride

A hard superficial case, approximately 68 HRC, on the surface of a finished tap produced by means of a cyanide salt bath.

Purpose to resist abrasion and increase wear resistance due to the higher surface hardness.

Application effective in both abrasive and tough materials, cast iron, plastic, stainless steel and high tensile strength steels.

Note! Care must be used when selecting nitride surface treatment because the increase hardness has a tendency to make the tap easy to chip and damage: Nitride not recommended for fast spiral flute taps and taps smaller than machine screw #2.

Double Nitride

Very similar to Nitride surface treatment with the exception that the hard case produced is deeper and harder than standard Nitride.

Application extremely abrasive materials, plastic and gray cast iron.

Oxided

Produced on surface of a finished tap by means of a steam furnace or cyanide salt bath. Well know heat treatment by which an oxide layer (Fe3O4) is formed on the surface of the tap. This will improve the adherence of threading agent which leads to improved output of taps.

Categories of Oxide

Steam Oxide: To counteract galling or loading lubricate tap surfaces. Best for low carbon, leaded steel, stainless and gummy material.

Nitride and Oxide: For stress relief and light coating. Copper alloys of medium machinability.

Nitride Plus Steam Oxide: To add wear life and reduce loading. High speed production tapping, poor lubrication. Steam Oxide Plus Nitride: To add wear life and provide self lubrication. Use in cast iron.

Heavy Nitride Plus Steam Oxide: To add wear life in hard and dense metals. For tapping hard steel alloys, titanium, exotic metals and hard copper alloys.

Black Oxide: Helps retain cutting fluid in the working portion of the tap. Improves Performance in stainless steel, steel forgings, tool and die steel, and hot and cold rolled steels.

Surface Treatment for Taps (Continued)

Hard Chrome

A surface treatment in the form of a thin hard chromium layer deposit (.0001 approximately). Increases the taps surface hardness and help reduce torque required to drive the tap.

Purpose: Proven very advantageous in non-ferrous materials, such as copper, brass and bronze.

PVD Process (TiN, and TiCN)

Used to resist abrasion and chip welding. Biggest potential is for ferrous materials below 40RC.

TiN Titanium Nitriding

In the PVD treatment a 2-4 micron layer is formed. The coating is a gold color with a hardness of about 2300 HV with good friction characteristics and coating adhesion for improved tool life. TiN coating remains resistant up to 600 degrees centigrade.

TiCN Titanium Carbonitriding

A similar PVD process as TiN coating. Friction characteristics are still better than TiN. The TiCN coating remains resistant up to 400 degrees centigrade. The coating is a grey-purple color.

Insulation

A method of surface treatment which has a marked influence on diminishing the possibility of "cold welding" especially good for machining softer steels.

Jetting

A surface treatment through which the sliding property of the tap is increased, especially for machining different nonferrous metals.

Tapping Formulas

RPM = (SFM x 3.82) divided by D D = D

D = Diameter of Tap in inches

SFM = (3.14 x D x RPM) divided by 12 D = Diameter of Tap in inches

Inch Taps Drill Size = Major Diameter of Tap minus .01299 x % of Full Thread

of Threads / inch

Major

Dia. of Tap minus Drill Diameter

Inch Taps % of Full Thread = Threads/in x

.01299

Metric Taps Drill Size = Major Diameter of Tap (mm) minus % of Thread x Metric Pitch

76.98

Metric Taps 76.980 % of Full Thread = Metric x (Basic Major Diameter (mm) minus Drilled Hole (mm))

Form Tap Drill Size = Basic Tap OD minus

Pitch

.0068 x % of Threads

> Threads / Inch

Inch Taps IPM (For Threads) = RPM divided by TPI (Threads per Inch)

Tapping Formulas (Continued)

Inch Taps IPR (For Threads) = 1 divided by TPI

Inch Taps IPM (Inches Per Minute) = IPR x RPM

Inch Taps IPR (Inches Per Rev.) = IPM divided by RPM

Metric Taps MM/Min = RPM x Metric Pitch

Inch Taps In/Min = RPM divided by # of Threads / in.

Distance = Rate x Time

Distance

Time =

Rate

Troubleshooting

General Problem: Dimensional Accuracy

Specific	Cause	Solution
	Incorrect Tap	1. Use Proper GH limits of taps
		2. Use longer chamfered taps.
	Chip Packing	1. Use spiral point or spiral fluted taps.
		2. Reduce number of flutes to provide extra chip room.
		3, Use larger hole size.
		4. If tapping a blind hole, allow deeper holes where applicable or shorten the thread length of the parts.
Oversize Pitch Diameter		5. Use proper lubricant.
Diamotor	Galling	1. Apply proper surface treatment such as steam oxide or chrome.
		2. Use proper cutting lubricant.
		3. Reduce tapping speed.
		4. Use proper cutting angle in accordance with material being tapped.
		5. Use larger hole size.
	Operating Conditions	1. Apply proper tapping speed.
		2. Correct alignment of tap and drilled hole.
		3. Use proper tapping speed to avoid torn or rough threads.
		4. Use tapping attachment with axial compensation.
		5. Use proper tapping machine with suitable power.
		6. Avoid misalignment of the tap and drilled hole from loose spindle or worn holder.
	Tool Conditions	1. Obtain proper indexing angle for the flutes at the cutting edge.
		2. Grind proper cutting angle and chamfer angle.
		3. Avoid too narrow a land width.
		4. Remove burrs from regrinding.
Oversize Internal	Hole Size	1. Use minimum hole size.
		2. Avoid tapered hole
		3. Use proper chamfered taps.
	Galling	Galling solutions 1 through 4 can be applied to this specific problem.

Undersize Pitch	Incorrect Tap	 Use Oversize taps. a. Use for cutting materials such as copper alloy, aluminum alloy and cast iron. b. Use for cutting tubing which will have "spring back" action after tapping. Apply proper chamfer angle. Increase cutting angle.
	Damaged Thread	1. Use proper reversing speed to avoid damaging tapped thread on the way out of the hole.
Undersize	Leftover Chips	1. Increase cutting performance to avoid any left over chips in the hole.
Internal Diameter	Hole Size	1. Use maximum drill size

General Problem: Surface Finish

Specific	Cause	Solution
Torn or Rough Thread	Chamfer Too Short	1. Increase chamfer length.
C C	Wrong Cutting Angle	1. Apply proper cutting angle.
	Galling	 Use thread relieved taps. Reduce land width. Apply surface treatment such as steam oxide or chrome. Use proper cutting lubricant. Reduce tapping speed. Use larger hole size. Obtain proper alignment between tap and work.
	Chip Packing	 Use spiral pointed or spiral fluted taps. Use larger drill size.
	Tool Condition	 Avoid too narrow a land width. Do not grind the bottom of the flute.
Chattering on Tapped Thread	Tool Free Cutting	 Reduce cutting angle. Reduce amount of thread relief.

General Problem: Tool Life

Specific	Cause	Solution
Breakage	Incorrect Tap Selection	1. Avoid chip packing in the flutes or the bottom of the hole. Use spiral pointed or spiral fluted taps or fluteless taps.
		2. Apply correct surface treatment such as steam oxide or bright.
	Excessive Tapping Torque	 Use larger drill size. Try to shorten thread length.
		 Increase cutting angle. Apply a tap with more thread relief and reduced land width
		5. Use spiral pointed or spiral fluted taps.
	Operating Condition	 Reduce tapping speed. Avoid misalignment between tap and the hole and tapered hole.
		 Use floating type of tapping holder. Use tapping holder with torque adjustment
		5. Avoid hitting bottom of the hole with tap.
	Tool Condition	 Do not grind bottom of the flute. Avoid too parrow a land width
		3. Remove all worn sections when regrinding the flutes.
		4. Regrind tool more frequently.
Chipping	Incorrect Tap Selection	 Reduce cutting angle. Use a different kind of high speed steel tap.
		3. Reduce hardness of the tap.
		 4. Increase chamfer length. 5. Avoid chin packing in the flutes or in the bottom of the hole by using
		spiral fluted or spiral pointed taps.
	Operating Conditions	1. Reduce tapping speed.
		3. Avoid sudden return of reverse in blind hole tapping.
		4. Avoid galling.
		5. Use larger hole size.
Wear	Incorrect Tap Selection	 Apply specially designed taps for tapping heat treated material. Change to a type of high speed steel tap that contains vanadium
		3. Apply special surface treatment such as nitriding.
		4. Increase chamfer length.
	Operating Conditions	1. Reduce tapping speed.
		 Apply proper cutting lubricants. Avoid work hardened hole.
		4. Use larger hole size.
	Tool Condition	 Grind proper cutting angle. Avoid hardness reduction from grinding process.

(Continued)

38

TAPINATIC'

General Problems Related To Tap Holder

Specific Tap stops before reaching required depth	Cause Clutch of X, R or TC/DC is slipping with new tap. Clutch of X, R or TC/DC is slipping with dull tap.	So 1. 1.	Diution Increase torque adjustment until a sharp tap can be driven to proper depth. Then add one half turn and lock adjustment Change to new sharp tap.
	Clutch of X, R or TC/DC slips when fully tightened.	1. 2.	The torque required is too great for the tapping attachment. Use a larger model. Clutch may be worn and needs replacing.
	The housing of the X, R or TC/DC stops rotating.	1.	The torque required is too great for the machine and the machine spindle is stopping. A machine with more torque is needed.
	Drive disengages and goes into neutral.	1.	Set machine stop to allow tap to feed deeper into hole.
	The self-feed adjustment of TC/DC is set to minimum self-feed and drive goes into neutral.	1. 2.	Back off self-feed adjustment for more forward drive engagement and adjust machine stop. Note: There can be confusion between the clutch slipping and the drive going into neutral. You can determine what is occuring from the sound. With the R model, there is a loud ratcheting sound when the clutch slips. When the drive goes into neutral it is quiet. With the X or TC/DC model when the clutch slips there is no sound and when the drive goes into neutral there is a clicking sound.
Tap pulls out of collet chuck.	Tap chuck nut is not tightened securely.	1.	Be sure to follow operator instructions for installation of tap.
	Tap square is not being driven properly.	1.	Be sure to follow operator instructions for installation of tap.
	Back jaws for driving tap square are damaged.	1.	Replace back jaws and please see operator instructions for installation of tap.
Tap stops and starts chattering on the way out of the hole.	With X, R or TC/DC speed increases by 1.75 times for reverse, operator is not feeding fast enough to keep up with tap.	1.	Retract the machine spindle at a faster rate with a smooth motion.
	With RDT, ID or NCRT on a machining center, the feed rate is not keeping up with the tap.	1. 2. 3.	Adjust machines feed rate correctly according to operator instructions. Be sure that potentiometer over ride control is canceled. Please see programming in operator instructions. Be sure that "Ramp" or "Exact Stop" is not in effect. Please see programming in operator instructions.

39

Self-reversing tapping attachment does not reverse.	Stop arm is not installed or prevented from rotating.	1. Please see operator instructions for stop arm and torque bar installation.
Coolant has entered the housing of the tapping attachment.	Tapping attachment is being flooded with external coolant.	1. Try to avoid flooding tapping attachment itself.
	Internal Coolant system is leaking due to pressure build up.	1. Please be sure not to exceed maximum recommended pressure. Please be sure outlet for coolant flow is adequate. Please see operator instructions.

Note:

Coolant can be removed by using the following procedure.

For Immediate Assistance call (800) 854-6019 or E-mail us at info@tapmatic.com